第一阶段:联邦学习系统基础及进阶

联邦学习(Federated Learning),又称联合学习,作为一种分布式机器学习框架,能够在保护数据隐私、满足合法合规要求的前提下,让多参与方或多计算结点之间在不共享原始数据的基础上联合进行高效率的机器学习。本课程包含联邦学习系统介绍、业界发展以及分布式训练初步实现。

联邦学习基础理论
联邦学习基础理论

联邦学习(Federated Learning),又称联合学习,作为一种分布式机器学习框架,能够在保护数据隐私、满足合法合规要求的前提下,让多参与方或多计算结点之间在不共享原始数据的基础上联合进行高效率的机器学习。本课程是联邦学习进阶课程,介绍更加严苛的隐私保护方法和分布式算法进阶:FedOpt和FedMDGA。

联邦学习系统进阶
联邦学习系统进阶

第二阶段:联邦学习分类

联邦学习(Federated Learning),又称联合学习,作为一种分布式机器学习框架,能够在保护数据隐私、满足合法合规要求的前提下,让多参与方或多计算结点之间在不共享原始数据的基础上联合进行高效率的机器学习。本课程介绍算法异构的松耦合联邦学习,并介绍基于数据生成器的松耦合联邦学习算法——LCFL。

算法异构的松耦合联邦学习
算法异构的松耦合联邦学习

联邦学习(Federated Learning),又称联合学习,作为一种分布式机器学习框架,能够在保护数据隐私、满足合法合规要求的前提下,让多参与方或多计算结点之间在不共享原始数据的基础上联合进行高效率的机器学习。本课程介绍模型异构联邦学习的定义、场景以及当前学术界和工业界的研究进展及经典算法。

模型异构联邦学习
模型异构联邦学习

联邦学习(Federated Learning),又称联合学习,作为一种分布式机器学习框架,能够在保护数据隐私、满足合法合规要求的前提下,让多参与方或多计算结点之间在不共享原始数据的基础上联合进行高效率的机器学习。本课程介绍横向联邦学习个性化算法的进阶:即元学习和联邦学习的结合。

联邦元学习
联邦元学习

第三阶段:纵向联邦学习

联邦学习(Federated Learning),又称联合学习,作为一种分布式机器学习框架,能够在保护数据隐私、满足合法合规要求的前提下,让多参与方或多计算结点之间在不共享原始数据的基础上联合进行高效率的机器学习。本课程介绍纵向联邦学习算法,包括数据对齐,线性拟合、逻辑回归、分类树、决策树、XGBoost等,并讲解如何实现最简单的纵向联邦学习。

纵向联邦学习技术与实践
纵向联邦学习技术与实践

第四阶段:联邦学习应用

联邦学习(Federated Learning),又称联合学习,作为一种分布式机器学习框架,能够在保护数据隐私、满足合法合规要求的前提下,让多参与方或多计算结点之间在不共享原始数据的基础上联合进行高效率的机器学习。本课程是介绍联邦学习业界应用,并指导用户上手一个自己的联邦学习应用。

联邦学习应用
联邦学习应用

华为云开发者学堂,从入门到精通,探索更多学习路径

进入开发者学堂